Turning research data into powerful visuals

Graphical representation of data

Koen Van den Eeckhout - Baryon

Session 1 Graphical representation of data homework assignment part 1 **Session 2 Producing and designing data visuals** homework assignment part 2 **Session 3** Visualizing scientific research

Introduction

The importance of data visualization

Historic data visuals

What is a good data visualization?

_____ 15' break

Communication principles

Identifying your message

Adapting to the audience

Signal-to-noise ratio

Introductions

2004 - 09

Engineering physics (Ghent University)

2009 - 13

PhD in physics (Ghent University)

2013 - 18

Post-doctoral researcher (Ghent University)
Grants & incentives consultant (EY)
Founded Baryon

2019 - now

Expanding Baryon as an information design agency

Koen Van den Eeckhout | koen@baryon.be

Introductions

What's your name?

What's your research?

Why are you here today?

Х	Υ		
55.3846	97.1795		
51.5385	95.0256		
46.1538	94.4872		
42.8205	91.4103		
40.7692	88.3333		
38.7179	84.8718		
35.6410	79.8718		
33.0769	77.5641		
28.9744	74.4872		
26.1538	71.4103		
23.0769	66.4103		
22.3077	61.7949		
22.3077	57.1795		
23.3333	52.9487		
25.8974	51.0256		
29.4872	51.0256		
32.8205	51.0256		
35.3846	51.4103		
40.2564	51.4103		
44.1026	52.9487		
46.6667	54.1026		

X Mean: 54.26
Y Mean: 47.83
X SD : 16.76
Y SD : 26.93
Corr. : -0.06

Why visual data communication?

INFORMATION DENSITY

better at summarizing large amounts of information

Why visual data communication?

ATTRACTIVE

better at catching the reader's attention

INFORMATION DENSITY

better at summarizing large amounts of information

+261,000 jobs in

October

+8.2%

PRICE

INDEX (SEP7.)

AVG. HOURLY

ELLA KURZE/THE NEW YORK TIMES

EARNINGS

CONSUMER

JULY

WAGES ARE STILL

GROWING RAPIDLY

Wage growth from a year

ago is strong, but it hasn't

inflation over the last year.

kept pace with record

20

'21

U.S. Added 261,000 Jobs in October ...

The figure would typically be greeted as good news, but it may complicate the fight against inflation.

JAN, '22

... While Underlying Signals Are Mixed

21

JULY

63% V

62

61

THE WORK FORCE IS

The share of people who

seeking work is stuck well

below prepandemic levels.

are working or actively

STILL RECOVERING

MONTHLY CHANGE IN JOBS

+600,000

=400,000

+200,000

JAN: '21

The unemployment rate

rose slightly last month.

'20

though it is hovering near the lows of recent years.

THE BIDEN

PRESIDENCY

Source: Bureau of Labor Statistics | Note: Data is seasonally adjusted

UNEMPLOYMENT REMAINS VERY LOW

15%

10

The New York Times

3,700 Lose Their Jobs in a Day of Chaos

U.S. Added 261,000 Jobs in October ...

... While Underlying Signals Are Mixed

Wisconsin G.O.P. Could Clinch Veto-Proof Hold

Fed Fears Wages and Prices Are Being Pushed Up

Subway Crimes w Riders' Low Risk

Randomness of Attacks

Is Heightening Fears

'Soccer Moms' No More, Suburban Women Hold Key to Midterms

From left: Olivia Kelly, Litzy Hernandez Cota and Celeste Giordano, who all live in swing states

Sand Dunes in Big Muddy

Checking Off Biden's Wish List

A Covid Double Standard

Aiding a Powerful CBS Figure

Irving Fallout Continues

The Way She Was

Why visual data communication?

ATTRACTIVE

better at catching the reader's attention

INFORMATION DENSITY

better at summarizing large amounts of information

EASIER TO UNDERSTAND

thanks to dual coding and better knowledge retention

Dual-coding theory

a combination of **visual stimuli** (pictures) and **verbal stimuli** (words) stimulates the brain to make connections

Sketchnoting

combining simple illustrations with small amounts of text = a great way of note-taking

Why visual data communication?

ATTRACTIVE

better at catching the reader's attention

INFORMATION DENSITY

better at summarizing large amounts of information

EASIER TO UNDERSTAND

thanks to dual coding and better knowledge retention There are some basic precautions you can take, which are the same as what you should be doing every day to stave off other respira diseases. You've seen the guidance before: Wash your hands Cover your nose and mouth when you sneeze. And when you stay home from work or school and drink lots of fluids.

The CDC recommends washing with soap and water for at le seconds after using the bathroom, before eating and after blo nose or sneezing. It also advises not to touch your eyes, nose and to clean objects and surfaces you touch often.

Read more about preparing for coronavirus here.

Return to top

Russia

Colombia

Mexico

Where has it spread in the world?

33,087,000

Change over time Count 72 Recovered 12 Healthy 116 Sick

1.154,299

813,056

800,142

730.317 • 29.737

▲ 49,251

▲ 47.980

▲ 31,247

+4%

+4%

20,299

25,488

32,142

76,430

Why outbreaks like coronavirus spread exponentially, and how to "flatten the curve"

By Harry Stevens March 14, 2020

PLEASE NOTE

The Washington Post is providing this story for free so that all readers have access to this important information about the coronavirus. For more free stories, sign up for our daily Coronavirus Updates newsletter

After the first case of covid-19, the disease caused by the new strain of coronavirus, was announced in the United States, reports of further infections trickled in slowly. Two months later, that trickle has turned into a steady current.

[Lire en español | Leggi in italiano | اقرأ هذا المقال بالعربية | Lire en

| 日本語で読む | به فارسى بخوانيد | Leia em português no русски | Lesen Sie auf Deutsch | Lees in het ıds | Prečítajte si po Slovensky | বाश्नाग्न পড़न | हिंदी में पढ़ें] Feb. 1 March 1 March 13 plore the number of cases over time alled **exponential curve** has experts worried. If the of cases were to continue to double every three days, there

would be about a hundred million cases in the United States by

WashPost PR Blog

The Washington Post to expand graphics and design teams with 14 new positions

The new roles will allow The Post to produce more visual journalism in response to news developments.

By WashPostPR

June 26, 2020

The Washington Post today announced plans to add 14 new positions to tl design teams, expanding its visual journalism to communicate informatio and powerful ways. The job postings will be accessible at careers.washingt the coming weeks.

Het jaar in datajournalistiek

The Economist or readers," said Mar raphics editors and d Off the Charts launches next week. It's a newsletter s, strengthening our containing the best of our data journalism from the that is driven by rap team behind @EconDailyCharts. Sign up: econ.st

/3ghaNGW Tweet vertalen

We're launching a data newsletter

Off the Charts

Guardian Masterclasses

Data visualisation: A six-week visual storytelling programme

Over six consecutive weeks, this high-impact and practical workshop will give you the tools to transform your datasets into stunningly memorable visuals - with experts Adam Frost and **Tobias Sturt**

Online workshop

Dates: Six consecutive Thursdays, from 4 November until 9 December 2021

Times: 2pm-5pm (GMT)

journalists financial institutions researchers marketing agencies organisations governments technical start-ups food producers mobile health apps

• • •

complex insights
large amounts of data
technical information

readers
clients
general public
platform users
members
consumers
patients
students
management

Influence of rare-earth codoping on the afterglow behaviour in Ca,Si,Ng:Eu2+

Koen Van den Eeckhout, Philippe F. Smet, Dirk Poelman Lumitab, Department of Solid State Sciences, Ghant University

Background

- suffly and uncomercy signage
 dials and displays
 resiscal imaging

Ca,51,Na:Eu2+,RE3+

Preparation

K 14 01

- . Ca,N, and Si,N, for the host crystal

- Semperature 1301-1400°C
 diseptives 1-3 feature
 Howing atmosphere of 50% N₂ and 10% H₂.

Acknowledgement

Many thinks as Pater Devention, Adde this and Erik van der Kolk from Oxide Conveniety of Technology for Investment in TL memory

Influence of rare earth codoping

Dopant and codopant concentration

The brightness of the afterglow is invently influenced by the depose and confesses concentrations. In proceed, hower concentrations are professive.

Conclusions

Rare earth codepoid Ca.S.O., for 'in on a once presistent phoughout the cast by excited with both UV and scatch light Codepoid, with thethers greatly defined the influence the influence by whilming the mean trap feeds.

To obtain a bright attention, the dopost and contents are prelimbly added to the starting product as their flams life form, and as concessors as the higher than the

Babylonian world map around 600 BC

Egyptian map around 1150 BC

Roman map around 350 BC

Michiel Florent van Langren 1644

Christoph Scheiner 1626

A Specimens of a Chart of Biography.

00G:				
Anacreon	Thucydides Herodotus Demonth Xenophon	Ari	Polybius stardus	Sallust Line
	Aristophanes dar Plato Sophocles Aristolle Hippocrates	Enclid Em	Terence	Virgil Horace
Cyrus P.	Agesitaus pricles Philip	Aratus Philopær		Cicero (4)
Solon Themi	Alcibiados Alexa stocles Dionysius non Epaninondas Carnillus		Tigrachus Af' Sylla	Brutus Augustus E
500	50. 400.	300.	50.	8 0

The inventor of the bar, line and pie chart

The Upright divisions are Ten Thousand Pounds each. The Black Lines are Exports the Ribbedlines Imports.

Exports and Imports to and from DENMARK & NORWAY from 1700 to 1780.

The Bottom line is divided into Years, the Right hand line into L10,000 each.

Note scale 302, Second, London.

William Playfair 1781

William Playfair 1786

DIAGRAM OF THE CAUSES OF MORTALITY

APRIL 1855 TO MARCH 1856.

IN THE ARMY IN THE EAST.

APRIL 1854 TO MARCH 1855.

The Areas of the blue, red, & black wedges are each measured from the centre as the common vertex.

The blue wedges measured from the centre of the circle represent area for area the deaths from Preventible or Mitigable Zymotic diseases, the red wedges measured from the centre the deaths from wounds, & the black wedges measured from the centre the deaths from all other causes. The black line across the red triangle in Nov? 1854 marks the boundary of the deaths from all other causes during the month.

In October 1854, & April 1855; the black area coincides with the red; in January & February 1856, the blue coincides with the black.

The entire areas may be compared by following the blue, the red & the black lines enclosing them.

Florence Nightingale 1858

What is a good data visualization?

Group exercise

Each group receives a set of data visuals to discuss.

As a group, choose your **most favorite** and **least favorite data visual** and explain why.

All the slides and all the links:

baryon.be/dataviz-resources

complicated data art

clear

correct

beautiful

Mushroom is the UK's most liked pizza topping

Generally speaking, which of the following toppings do you like on a pizza? Select as many as you like

Other items not depicted include: onions (62%), chicken (56%), beef (36%), chillies (31%), jalapeños (30%), pork (25%), tuna (22%), anchovies (18%). 2% of people say they only like Margherita pizzas

YouGov yougov.com

ebruary 26-28, 2017

misleading charts

clear

correct

beautiful

boring charts

clear correct beautiful

Introduction

The importance of data visualization

Historic data visuals

What is a good data visualization?

_____ 15' break

Communication principles

Identifying your message

Adapting to the audience

Signal-to-noise ratio

- 1. Identify your _ _ _ _ _
- 2. Adapt to your _ _ _ _ _
- 3. Improve the _ _ _ _ _ _ _ _ _ ratio

The basic model of communication

1. Identify your message

2. Adapt to your _ _ _ _ _

3. Improve the _ _ _ _ - _ _ - _ _ _ ratio

A good chart shows the data, a great chart tells a story.

story

Identify your message

list available data and illustrations
explore, refine, combine, complete
look for outliers & surprises
separate main and side issues
define key message(s)
limit yourself

Identify your message

explore, refine, combine, complete
look for outliers & surprises
separate main and side issues

define key message(s)

limit yourself

list the available data and illustrations

John F. Clauser

Anton Zeilinger

Cecil Powell Facts

Photo from the Nobel Foundation archive.

Cecil Frank Powell

The Nobel Prize in Physics 1950

Born: 5 December 1903 Tonbridge, United Kingdom

Died: 9 August 1969, Italy

Affiliation at the time of the award: Bristol University, Bristol, United Kingdom

Prize motivation: "for his development of the photographic method of studying nuclear processes and his discoveries regarding mesons made with this method."

Prize share: 1/1

full name
year of award
date of birth
place of birth
date of death
prize share
picture

--

gender

gender balance

Men: 218

Women: 4

Laureates' birthplace EIROPE NORTH MARIOA ASIA OCCAMA AFRICA = AFRICA =

The Nobel Prize in Physics

114 years, 108 prizes, 198 laureates

213 men, 12 women (5.3%)

Women of the Nobel Prize

The Nobel Prize exists since 1901. In those 122 years, the Prize was awarded 898 times to a man, but only 61 times to a woman. 2009 was a record year, with 5 women winning a Prize.

In 2022, only 2 women received the Prize: Annie Ernaux won the Literature Prize, and Carolyn Bertozzi won the Chemistry Prize together with Morten Meldal and K. Barry Sharpless, for their groundbreaking work on click chemistry and bioorthogonal chemistry - chemical reactions that can occur inside of living systems.

Infographic design: Koen Van den Eeckhout (@koen_vde www.baryon.be)

Marie Skłodowska-Curie Andrea Ghez prize share: 1/4 2022 1901 **Physics** 218 men, 4 women (1.8%)

Women of the Nobel Prize

Infographic design: Koen Van den Eeckhout (@koen_vde | www.baryon.be) Source: nobelprize.org

Dual axes

Telling too many stories at once?

Circular material use rate

This indicator measures the degree of circularity of the economy by looking at the rate of use of secondary materials.

1. Identify your message

2. Adapt to your _ _ _ _ _

3. Improve the _ _ _ _ - _ _ - _ _ _ ratio

- 1. Identify your message
- 2. Adapt to your audience
- 3. Improve the _ _ _ _ _ _ _ _ _ ratio

The basic model of communication

Who is my audience?

What do they want to know?

What do they need to do?

How much time do they have?

What are their biases?

How frequently will they look at this?

- 1. Identify your message
- 2. Adapt to your audience
- 3. Improve the _ _ _ _ _ _ _ _ _ ratio

The basic model of communication

GPS

CPU performance vs. power

Up to

2x

faster CPU performance⁴

Matches peak PC performance using

25%

of the power4

CPU performance

A16 Bionic 2022

A13 Bionic 2019

Nearest competitor 2022

- 1. Identify your message
- 2. Adapt to your audience
- 3. Improve the **signal-to-noise** ratio

"Maximize the data-ink ratio"

Yearly passengers in Brussels Airport

Data: Brussels Airport, Statistics Flanders

Low data-ink ratio

Yearly passengers in Brussels Airport

Data: Brussels Airport, Statistics Flanders

30 million

High data-ink ratio

Noise = physical noise

elements which are on the visual but are not helpful

+ mental noise

thinking work required from your audience

CPU performance vs. power

The Wealthy West

Inequality is not just limited to North versus South

The Wealthy West

Inequality is not just limited to North versus South

Source: Credit Suisse Global Wealth Report 2019; Socioeconomic Data and Applications Center - Gridded Population of the World v.11

A #MakeoverMonday visualization by **Koen Van den Eeckhout** (@koen_vde)

Quick tipDirect labeling

Communication principles

- 1. Identify your message
- 2. Adapt to your audience
- 3. Improve the **signal-to-noise** ratio

How would you do it?

Write down at least 5 things you would change to improve this visual

Lunch break

All the slides and all the links:

baryon.be/dataviz-resources

Session 1 Graphical representation of data homework assignment part 1 **Session 2 Producing and designing data visuals** homework assignment part 2 **Session 3** Visualizing scientific research

Encoding

Graphical representation categories

Visual variables

Chart types

Common chart types

______ 15' break

Less common chart types

Maps and tables

Maps

Table design

Inspiration – online and offline

our data?

visual variables

How can we turn raw numbers into shapes?

comparison

part-to-whole comparison

distribution

spatial distribution

correlation

evolution

comparison

part-to-whole comparison

distribution

spatial distribution

correlation

evolution

part-to-whole comparison

comparison

part-to-whole comparison

distribution

spatial distribution

correlation

evolution

comparison

part-to-whole comparison

distribution

spatial distribution

correlation

evolution

comparison
part-to-whole comparison
distribution
spatial distribution

correlation

evolution

comparison
part-to-whole comparison
distribution
spatial distribution
correlation

evolution

comparison
part-to-whole comparison
distribution
spatial distribution
correlation
evolution

Visual variables

color brightness

EU regions, by economic development

The region of Inner London-West is an outlier: its GDP is more than 600% of the EU average and, consequently, receives little in EU catch-up funds. Let's zoom in so we can see more details for the other regions.

shape

Population and Live Stock

Each grey figure represents 5 million population Each complete red symbol represents 5 million cattle Each complete black symbol represents 5 million pigs Each complete blue symbol represents 5 million sheep Average for 1935 - 1939

There are more cattle and pigs per head of population in America than Britain, but sheep—only 5 in U.S. for every 9 in Britain—are a different story, and provide the tender home-grown leg of mutton prized by the British.

texture

		% 20	25	30	35
→N-VA Leader: Bart de Wever	16.03%	25 (*8) seats			
Leader: Tom Van Grieken	11.95%	18 (*15) seats			
▽PS Leader: Elio Di Rupo	9 .46%	20 (+3) seats			
CD&V Leader: Wouter Beke	8.89%	12 (*6) seats			
⇔Open VId Leader: Gwendolyn Rutten	8.54%	12 (*2) seats			
★PTB-PVDA Leader: Peter Mertens	8.62%	12 (-10) seats			
TAMR Leader: Charles Michel	7 .56%	14 (*6) seats			
- Sp.a Leader: John Crombez	6.71%	9 (+4) seats			
▼Ecolo Leaders: Nollet & Khattabi	6 .14%	13 (-7) seats			
Groen Leader: Meyrem Almaci	6.10%	8 (-2) seats			
TeadH Leader: Maxime Prévot	3 .70%	5 (•4) seats			
▼DéFl Leader: Olivier Maingain	2 .22%	2 (+0) seats			

Visual variable brainstorming

Individual exercise (10 minutes)

Using visual variables, think of **as many ways as possible** to visualize the following two-number dataset:

75

37

Examples, using **size**:

Region Americas Asia EU Africa & Middle East

graphical representation categories

our data?

visual variables

How can we turn raw numbers into shapes?

Common chart types

Bar charts: comparison using size (length)

Bar charts not starting from zero

Use a dot plot

Equidistant labels for non-equidistant data

Equidistant labels for non-equidistant data

Equidistant labels for non-equidistant data

Use a line or area chart

Economic impact of aging population in Belgium

SCvV reference scenario, July 2020 in % of bnp

Common chart types

Line charts: evolution using position and orientation

Line chart spaghetti

Make one line stand out

A spaghetti chart of baby names popularity

Coronavirus deaths in Italy and Spain are increasing much more rapidly than they did in China

Cumulative number of deaths, by number of days since 10th death

FT graphic: John Burn-Murdoch / @jburnmurdoch Source: FT analysis of Johns Hopkins University, CSSE. Data updated March 15, 17:00 GMT © FT

Coronavirus deaths in Italy, Spain, the UK and US are increasing more rapidly than they did in China

Cumulative number of deaths, by number of days since 10th death

FT graphic: John Burn-Murdoch / @jburnmurdoch Source: FT analysis of Johns Hopkins University, CSSE; Worldometers; FT research. Data updated March 26, 19:00 GMT © FT

Daily death tolls are still accelerating in most countries

Daily deaths with coronavirus (7-day rolling average), by number of days since 3 daily deaths first recorded

FT graphic: John Burn-Murdoch / @jburnmurdoch Source: FT analysis of European Centre for Disease Prevention and Control; Worldometers; FT research. Data updated April 05, 19:00 GMT © FT Financial Times, April 5, 2020

Line charts not starting from zero

Low number of job seekers

Unemployed job seekers in Flanders

Low number of job seekers

Unemployed job seekers in Flanders

Common chart types

Pie charts: part-to-whole comparison using size

It doesn't add up

Use a bar chart

Too many categories

Group categories together

Difficult to compare

Use a bar chart

3D pie charts

It sets you thinking

The chartbuster rules.

The Verna stays the undisputed No. 1 in its segment.

With its inimitable styling and superior design, the Verna has emerged as the largest setting car in its segment by a large mangin. And it's not just the car that's made us the leader, it's also discerning people like you. No wonder the competition's been left behind. Far far behind.

Use a bar chart

Source: SIAM Data

The chartbuster rules.

The Verna stays the undisputed Π o. 1 in its segment.

With its inimitable styling and superior design, the Verna has emerged as the largest setting car in its segment by a large margin. And it's not just the car that's made us the leader, it's also discerning people like you. No wonder the competition's been left behind. Far far behind.

Common chart types

Scatter plots: correlation or distribution using position

CHILDREN DYING

Percent dying before their fifth birthday

HUNGER

Share of people undernourished

All the slides and all the links:

baryon.be/dataviz-resources

Encoding

Graphical representation categories

Visual variables

Chart types

Common chart types

______ 15' break

Less common chart types

Maps and tables

Maps

Table design

Inspiration – online and offline

Search by Function

View by List

Area Graph

Arc Diagram

Bubble Map

Bullet Graph

Marimekko Chart Multi-set Bar Chart Network Diagram Nightingale Rose

Violin Plot

Word Cloud

Treemop

Description

Treemaps are an alternative way of visualising the hierarchical structure of a <u>Tree Diagram</u> while also displaying quantities for each category via area size. Each category is assigned a rectangle area with their subcategory rectangles nested inside of it.

When a quantity is assigned to a category, its area size is displayed in proportion to that quantity and to the other quantities within the same parent category in a part-to-whole relationship. Also, the area size of the parent category is the total of its subcategories. If no quantity is assigned to a subcategory, then it's area is divided equally amongst the other subcategories within its parent category.

The way rectangles are divided and ordered into subrectangles is dependent on the tiling algorithm used. Many tiling algorithms have been developed, but the "squarified algorithm" which keeps each rectangle as square as possible is the one commonly used.

Ben Shneiderman originally developed Treemaps as a way of visualising a vast file directory on a computer, without taking up too much space on the screen. This makes Treemaps a more compact and space-efficient option for displaying hierarchies, that gives a quick overview of the structure. Treemaps are also great at comparing the proportions between categories via their area size.

The downside to a Treemap is that it doesn't show the hierarchal levels as clearly as other charts that visualise hierarchal data (such as a Tree Diagram or Sunburst Diagram).

Anotomy

Functions

Similar Charts

Tools to Generate Visualisation

AnyChart (code)

amCharts (code)

D3 (code)

Datamatic

Google Charts (code) or Google Docs

Infogram

jChartFX (JavaScript plugin)

JSCharting (JS Library)

RAWGraphs

Slemma

Vega (code)

<u>Vizzlo</u>

ZingChart (code)

Examples

Region-wise Literacy Rates in 2015, World Population - FusionCharts

Top 10 Chinese Exports to the World - AnyChart

Treemap - Datamatic

Need to access this page offline? Download the eBook from here.

Merchandise & other related dataviz products can be found at the store

. . . .

N 202

Filter by char	t name or AKA															Reference Type: C	Example • Solution	Chart Families:	Categorical Hierarch	ical Relational 0 1	iemporal • Spatial
	Amazon QuickSight	ArcGIS	ChartJS	Charticulator	D3.js	Data Illustrator	Datawrapper	Flourish	FusionCharts	Gephi	Google Charts	Google Data Studio	Highcharts	Infogram	JetPack Data	JMP	Keshif	Kibana	Leaflet.js	Mapbox	Matplotlib
Bar chart	•			•	••	0	••	0	0		••	0	•0	00	•	•	•	•			00
Clustered bar chart	•				•	0		0	0		••				0	•	•	•			•
Bullet chart				•	•		••		0							•					
Waterfall chart				•	•				0		•		0	0							
Radar chart			0		•				0				0								0
Polar chart			•	•	•								00								00
Connected dot plot					••	0	• • •	•													
Pictogram					0									0				•			
Proportional shape chart					•••	0		00	0		•										
Word cloud					•									0	•			•			••
Heat map	•			•	000	0			0				00			•		•			••
Matrix chart				•	0			0				0					•				
Dot plot					•		•0	•								••		0			

chartmaker.visualisingdata.com

Waffle charts

Subdued

Of 120 surveyed Syrian teenagers:

Source: Mercy Corps

*Economist estimate based on the report

Economist.com

Slopegraphs

The market demand for category 3 has grown to become the most important

Strip charts

Beeswarm plots

Sankey diagrams

Estimated U.S. Energy Consumption in 2019: 100.2 Quads

Source: LLNL March, 2020. Data is based on DOE/RIA MER (2019). If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation. EIA reports consumption of renewable resources (i.e., hydro, wind, geothermal and solar) for electricity in BTU-equivalent values by assuming a typical fossil fuel plant heat rate. The efficiency of electricity production is calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 65% for the residential sector, 65% for the commercial sector, 21% for the transportation sector and 49% for the industrial sector, which was updated in 2017 to reflect DOE's analysis of manufacturing. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527

Chart type exploration

Group exercise

Explore one or more of the following chart type collections:

datavizcatalogue.com

chartmaker.visualisingdata.com

chart.guide

Browse around, get familiar, explore examples

Discuss: Which chart types could be relevant for your research? Why?

Graphical representation of data

Individual exercise

Observe the following data set:

baryon.be/files/workshop/music.xlsx

Which **dimension** would you map to which **visual variable**?

Sketch how such a visual would look like.

A ustina	A.II	V	0	0	T	0
Artist	Album	Year	Genre	Copies sold (r		Country
The Beatles	Sgt. Pepper's Lonely Hearts Club Band	1967	Rock	18.2	Group	UK
Led Zeppelin	Led Zeppelin IV	1971	Rock	29	Group	UK
Pink Floyd	The Dark Side of the Moon	1973	Rock	24.2	Group	UK
Eagles	Their Greatest Hits (1971-1975)	1976	Rock	41.2	Group	USA
Eagles	Hotel California	1976	Rock	31.5	Group	USA
Fleetwood Mac	Rumours	1977	Rock	27.9	Group	UK & USA
Meat Loaf	Bat Out of Hell	1977	Rock	21.7	Solo	USA
Bee Gees	Saturday Night Fever	1977	Disco	21.6	Group	Australia
Pink Floyd	The Wall	1979	Rock	18.7	Group	UK
AC/DC	Back in Black	1980	Rock	29.4	Group	Australia
Michael Jackson	Thriller	1982	Pop	47.3	Solo	USA
Bruce Springsteen	Born in the U.S.A.	1984	Rock	19.6	Solo	USA
Michael Jackson	Bad	1987	Рор	22.2	Solo	USA
Guns N' Roses	Appetite for Destruction	1987	Rock	21.9	Group	USA
Madonna	The Immaculate Collection	1990	Рор	19.4	Solo	USA
Metallica	Metallica	1991	Rock	25.2	Group	USA
Whitney Houston	The Bodyguard	1992	Pop	28.4	Solo	USA
ABBA	Gold: Greatest Hits	1992	Pop	23	Group	Sweden
Alanis Morissette	Jagged Little Pill	1995	Rock	24.4	Solo	Canada
Celine Dion	Falling into You	1996	Рор	20.2	Solo	Canada
Shania Twain	Come On Over	1997	Country	29.6	Solo	Canada
Celine Dion	Let's Talk About Love	1997	Pop	19.3	Solo	Canada
Santana	Supernatural	1999	Rock	20.5	Group	USA
The Beatles	1	2000	Rock		Group	UK
Adele	21	2011	Pop	25.3		UK

Twitter

Huge thanks to @ChristiansenJen for the feedback + layout + sending me 2 issues when my store in NL didn't get them due to covid-19

Giorgia Lupi 🤣 @giorgialupi · 30 apr.

We @NYGovCuomo 's daily briefings. That's why at @pentagram we humbly tried to make his charts even more effective and human.

We talked to @FastCompany about it: fastcompany.com/90498405/andre...

But also check out the full project here: drive.google.com/file/d/1tS-BDR...

Full **Dataviz World Leaders** list at: twitter.com/Koen_VdE/lists

Books

Information graphics

Taschen

Data Sketches

Nadieh Bremer & Shirley Wu

Visual journalism

Gestalten

RECOMMENDED Better data visualizations

Jonathan Schwabish

The visual display of quantitative information

Edward R. Tufte

Storytelling with data

Cole Nussbaumer Knaflic

Data visualisation

Andy Kirk

Trees, maps and theorems

Jean-Luc Doumont

Dear data

Stefanie Posavec, Giorgia Lupi

Blogs

Visualising Data

Flowing Data

Nightingale

INFOGRAPHICS ▼

Get inspiration and ideas on how to make beautiful, impactful infographics

23 Stunning Animated and Interactive Infographics (and What You Can Learn From Them)

How to Customize a Case Study Infographic With Animated Data

Visme blog

Blog

Show all Data visualization Infographics Review Training

Baryon blog

Chartable

Videos

Datafest online 2020 23 different talks

Youtube playlist

Outlier Conference 2022

71 different talks

Youtube playlist

Podcasts

The Data Journalism Podcast

Data Journalism Conversations

The Data Journalism Podcast

Explore Explain

Storytelling with data

Data Viz Today

Data Stories

Homework assignment

The digital divide

In most countries, men have better access to the internet than women

Source: The Economist Intelligence Unit Inclusive Internet Index International Telecommunication Union, Gallup World Poll

A lifetime at war

No Americans born since 2001 have known their country at peace

Oil Time Low

Crude oil prices are at their lowest point since 1998, dropping over 85% in the past few months. But at the pump, we pay for more than just the oil.

Source: Belgian Petroleum Federation, FOD Economie, Statbel

What is your message?

Homework assignment

Download and explore a dataset of your choice at <u>ourworldindata.org</u>

Alternatively, you can use one of the following datasets:

<u>Titanic disaster dataset</u>

<u>Stack Overflow Developer Survey</u>

Nobel Prize winners

Yes, you can choose your own dataset

apart from these 3. However, make sure:

- your data has sufficient 'depth' to find an interesting story
- your key message can be understood by your audience
 (your audience = PhD students from all levels,
 and different fields)

Take enough time to familiarize yourself with the dataset

Identify one or more **key messages** you can derive from it

What is your concept?

Homework assignment (continued)

Select one of the key messages you identified previously

Explore different concepts to turn this message into a data visual

Choose 2 or 3 concepts and turn them into sketches

Submission

Homework assignment (continued)

Send one of your concept sketches (scan or photograph - jpg, png, or pdf)

to koen@baryon.be

Session 1 Graphical representation of data homework assignment part 1 **Session 2 Producing and designing data visuals** homework assignment part 2 **Session 3** Visualizing scientific research

Q&A

All the slides and all the links:

https://baryon.be/dataviz-resources

Koen Van den Eeckhout - <u>koen@baryon.be</u> - @koen_vde